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Abstract—In this paper we investigate the performance of using, 
within the EEG classification algorithm, feature extractors such 
phase synchrony and relative power spectral density indices 
calculated for seven frequency bands – delta (0.1–4 Hz), theta (4–7 
Hz), alpha1 (7–10 Hz), alpha2 (10–13 Hz), beta1 (13–18 Hz), beta2 
(18–30 Hz), gamma (30–70 Hz) –, that are believed to mostly 
reflect functionally different components of cognitive cortical 
activity. For classification of five mental tasks (baseline, count, 
letter, math and rotate) a Multi Layer Perceptron (MLP) neural 
network classifier was used. A standard principal component 
analysis (PCA) was applied here in order to reduce the high 
dimensionality of the input data. To quantitatively assess the 
performance of the extracted features a comparative study 
between their corresponding results and between them and some 
other EEG features is also provided. 

I. INTRODUCTION 

It is now largely recognized that the cognitive acts require 
the integration of numerous functional areas widely distributed 
over the brain and in constant interaction with each other [1]. 
Moreover, synchronization phenomena have been increasingly 
accepted as a key feature for the communication between 
different regions of the brain [2]. In neurophysiology the most 
common measures used to relieve synchronization proved to be 
correlation in the time domain and coherence in the frequency 
domain [3][4]. 

Recently, a new type of synchronization, called phase 
synchrony, was introduced [5]. This is more appropriate for the 
real signals analysis then the identical synchronization [6] or 
generalized synchronization [7] and it is defined as the 
appearance of a certain relation between the phases of the 
interacting systems while the amplitudes may remain 
uncorrelated. In particular, phase synchrony was frequently 
considered as possible subserving the overall integration of all 
dimensions of a cognitive act, including associative memory, 
emotional tone and motor planning [8]. Related to this new 
type of synchronization, coherence remains a measure that 
does not specifically quantify phase relationships. Moreover, 
being a measure of the linear co-variance between two spectra 
it can be applied only to stationary signals. 

In this paper, the degree of phase synchrony was measured 
by two recently developed measures, statistical phase 
synchrony and mean phase coherence, both able to deal with 
nonlinear and non-stationary signals like the EEG one. 

Another attribute of the cortical activity, the rhythmicity, has 
been extensively investigated so far in neuroscience. The 
rhythmic structure of EEG, revealed by the Fourier Transform, 
was capitalized to date in a large number of EEG features such 

as: the absolute band power, the relation of power in different 
bands, spatial asymmetry of band power, overall mean 
frequency, band mean frequency, peak frequencies and so on. 
Here we revisit this EEG feature and evaluate the performance 
of a relative band power spectral density index within a brain–
computer interface (BCI) application. 

II.   MATERIALS AND METHODS 

A. EEG signals 

Our EEG data comprise in a database freely provided by the 
Colorado State University, Department of Computer Science 
[9]. EEG data correspond to four subjects and to five mental 
tasks, each task being repeated twice. They were recorded 
simultaneously from 6 electrodes corresponding, in the 
International 10-20 system, to the C3, C4, P3, P4, O1 and O2 
positions on the scalp. All channels were referred to the right 
mastoid A2. They were digitally sampled at 250 Hz and each 
recording lasted 10 s. The tasks were performed without 
vocalizing and with the eyes closed and they consisted of: the 
baseline task, for which the subject was asked to relax; the 
letter task, for which the subject was trained to mentally 
compose a letter to a friend; the counting task, for which the 
subject was asked to watch sequentially numbers written on an 
imaginary blackboard; the math task, for which the subject was 
instructed to perform a nontrivial multiplication and the 
rotation task, for which the subject was asked to imaginary 
rotate an object (previous presented) about an axis. 

B. Phase Synchronization parameters 

In EEG signals the identification of phase synchrony is one 
complicated by their main characteristics: chaotic behavior, 
noise and non-stationarity. First, it was shown that the 
properties of phase synchronization in coupled nonlinear 
chaotic systems are similar to those in periodic oscillators 
driven by noise [5], the general condition being: 

 ϕm,n = |mφ1 − nφ2| < const. (1) 

where: φ1, φ2 are the phases of the two different oscillators, φm,n 

is their relative phase and n, m are some integers indicating the 
ratios of possible frequency locking. Because, in our case, the 
multivariate signals come from the same physiological system 
we considered the 1:1 (m=n=1) synchronization case. 
Additionally, in EEG signals the true synchronies, buried in a 
considerable background noise, can be detected only in a 
statistical sense. That is way the study of phase synchrony 



requires two distinct steps: (1) to estimate instantaneous phase 
of each signal, and (2) to provide a statistical criteria to 
quantify the degree of phase locking. Both steps are equally 
provided by the two phase–synchronization indices computed 
here, statistical phase synchrony and mean phase coherence. 

A method that does not require the signal to be stationary, 
namely the analytic concept of Hilbert transform, was used to 
estimate the instantaneous phase. For this, the analytic signal, 
X(t), obtained with the formula: 
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and corresponding to the analized signal x(t) (with its Hilbert 
transform, xh(t), and the integration performed in the sense of 
the Cauchy principal value) was further decomposed as X(t) = 
a(t)eiφ (t); here, a(t) represents the instantaneous amplitude and 
φ(t) is the phase we are looking for. 

1) Statistical phase synchrony: Statistical phase synchrony 
index, caracterizing the strength of phase synchrony between 
two signals, was computed as follows: first, the relative phase 
was calculated as φ(t)=|φ1(t)–φ2(t)|; here {φ1,2(t}} are the 
instantaneous phases obtained with eq. (2). Then, the 
distribution function for {φ mod 2π} was computed and its 
deviation from the uniform distribution was statistically 
assessed with the index given by eq. (3) and based on Shannon 
entropy [10]: 
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The value for maximum entropy (Hmax) was computed as lnM, 
where M – the optimum number of bins used to obtain the 
distribution function {φ mod 2π} –, was set e0.626+0.4ln(L-1) [11]; 
L parameter is the number of data points and the entropy H of 
the distribution was simply calculated as: 
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with pi representing the probability of finding the relative phase 
φ(t) within the i-th bin. 

2) Mean phase coherence: Another phase synchrony index, 
mean phase coherence [12], was computed based on the same 
instantaneous phases {φ1,2(t}} calculated above but, this time, 
restricted to the interval [0, 2 π]. The relative phase, φ(t)= 
φ1(t)– φ2(t), was used to determine the phase locking value as 
the average value: 
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where δt represents the sampling period. Indices ρ and R take 
values between 0 (no synchrony) and 1 (perfect synchrony). 

C. Features Extraction 

Prior to the estimation of phase synchrony measures and 
power spectral densities, each set of data was de-trended by 
using a polynomial 2nd order for removing slow drifts 
introduced by the EEG acquisition systems (associated, for 
example, with gradual changes in the quality of electrode 
contact to the skin). 

1) Relative band power indices: Relative band power was 
estimated for seven frequency bands – δ (0.1–4 Hz), θ (4–7Hz), 
α1 (7–10 Hz), α2 (10–13 Hz), β1 (13–18 Hz), β2 (18–30 Hz) 
and γ (30–70 Hz) –, within all 2.048 s successive sliding 
windows (512 points) (overlapped by 0.256 s) of all 6 
acquiring channels. The sliding step duration of only few 
hundreds of miliseconds ensures an appropriate tracking of the 
temporal cortical activations corresponding to the sequence of 
cognitive processes while the assumption of time invariant 
properties of the EEG signal was supported by the signal 
breakdown into short time slide windows [13]. 

Relative power contribution ratio at each frequency band was 
expressed as a percentage of the EEG power in the 0–125 Hz 
band: 
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where: b is the frequency band, k1,2 are the limits of the band 
range divided by the spectral resolution, df (df=sampling 
frequency/ window size) and Pl represents the power of the l-th 
component of the frequency spectrum. Thus, a feature vector of 
42 components (6 channels * 7 frequency bands) and 32 such 
vectors per each recording (1280 vectors in all) were obtained. 
 
 
 
 
 
 
 
 
 
 
 

2) Phase synchrony indices: In order to estimate phase 
synchrony indices, that are meaningless for a signal with 
broadband or a multimodal spectrum, we first pre-filtered the 
EEG signals. We applied to each channel seven linear band-
pass filters corresponding to the seven frequency bands also 
used for the relative power estimation. This resulted in seven 
signals for each acquisition point and the measures ρ and R 
were, then, calculated for all two–channels combinations 
(C3C4, C3P4, C3O2, C3P3, C3O1, P3C4, P3P4, P3O2, P3O1, 
O1C4, O1P4, O1O2, C4P4, C4O2, P4O2) and only for pairs of 
filtered signals representing equivalent frequency band. Each 
phase-locking value was calculated for sliding windows of 512 

Figure 1: Mean phase coherence versus Statistical phase synchrony obtained 
a) for the same pair channels and b) for different pair channels 
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data points, overlapped by 64 data points. Finally, a feature 
vector of 105 components (15 pair channels*7 frequency 
bands) and 32 such vectors were obtained per each recording, 
totalizing 1280 feature vectors per each synchrony measure (ρ 
and R) and for all subjects. For both synchronization 
parameters we achieved the same qualitatively results. 
    Two reasons made us to further keep only the statistical 
phase synchrony parameter for the classification part: 1) ρ and R 
showed the same tendency (see Figure 1) and 2) the mean phase 
coherence (R) can underestimate phase synchronizations when 
the distribution of φ(t) has more than one peak [14]. 

D. Features selection and classification 

Five neural networks (NNs) of the multilayer perceptron 
(MLP) structure have been used as classifiers. The first NN had 
as inputs the relative band power spectral densities (input 
vectors of 42 components, 7 bands*6 channels) estimated for 
sliding windows of 512 samples (overlapped by 64 samples), 
for all subjects and for all tasks and it had as outputs five 
classes corresponding to the five tasks. The 2nd and the 3rd NNs 
are similar to the first NN; what differs here is the window size 
used for spectral estimate: 256 samples and, respectively, 128 
samples. The 4th NN had as inputs feature vectors consisting of 
45 principal components corresponding to the 105–feature 
vectors represented by the statistical phase synchrony 
parameters. The features selection was done using PCA. Thus, 
for each of the seven bands the PCA was applied to the 15 R 
corresponding parameters and it produced the first principal 
components contributing at least 90% of the total data variance. 
As a result, for each of the δ, θ, α1, α2 and β1 bands the PCA 
produced seven values, for β2-band we obtained 6 values and 
for γ-band only 4 principal components were chosen. In this 
way, a simpler topology of the neural network and a reduction 
of the dimension of layers were achieved. The last NN was a 
network of the third NN type, with the input vectors obtained 
by concatenating only the first three principal components 
corresponding to each of the seven bands. Thus, we got feature 
vectors of 21 components (3 principal components * 7 
frequency bands). For all networks the same five classes 
corresponding to the five mental tasks represented the outputs. 
The nucleus of classification, based on feedforward neural 
networks with two hidden layers (of 10 and, respectively, 6 
processing elements), was trained with the backpropagation 
algorithm [15] using the L2 mean-square-error criterion. The 
cross-validation data set used for both, the training stop criteria 
and the performance evaluation of correct classification rate, 
was randomly chosen as 10% (128 samples) from the entire 
data set; the others 1152 samples formed the training data set. 

III. RESULTS 

The mental tasks classification results obtained with the five 
NNs are all summarized in Table 1. 

Because there is a body of literature dedicated to the BCI 
subject and because there are papers discussing the same five 
mental tasks discrimination, we further relate our results to part 
of these ones. Thus, in [16] Anderson et al. used the 
autoregressive (AR) models for all six EEG channels and the 

classification accuracy obtained for the subject who better 
performed all the tasks was in the range 31%÷54%. Moreover, 
by averaging the output of the best performing network over 20 
consecutive overlapping time windows, which amounted to 5 s 
of actual EEG data, they improved the performance to 70% for 
two of four subjects tested, and near to 40% for the other two. 
In [17], Anderson et al. evaluated, only for two tasks (baseline 
and math), four different EEG representations and found that 
the frequency–band representation yielded the best results: 
73.9% classification accuracy. The five cognitive tasks 
classification for only one subject was then revisited in [18]. 
Here, a frequency–band representation was used to represent 
the sources computed by independent component analysis 
(ICA). The best classification results obtained for three tasks 
(baseline, letter, math) and for two tasks (rotation and math) 
were 86% and, respectively, 94% correct classification rate. 
Compared to these results, the correct classification rate – 
obtained in our case for all subjects and for all tasks using the 
relative band power descriptors –, is a better one. One reason 
for this performance could be a more appropriate selection for 
the frequency bands. Being generally believed that frequencies 
above 40 Hz convey little information related to mental state, 
most frequency-based BCIs have been focused only on the α– 
and/or β–rhythms [17][18][19]. Most recently, oscillations at 
higher frequencies (γ band) have been found to be actually a 
signature of cognitive processes [20] such as active memory, 
percept formation, and/or object representation. In particular, 
functional correlates of γ–activity were reported during mental 
arithmetic [21], language processing [22] and, respectively, 
mental rotation [23] – all with respect to the rest condition. 
Moreover, recent studies have indicated that the standard 8-13 
Hz α–band actually may be comprised of a lower α–band 
(aprox. 8-10 Hz), usually found over prefrontal and parietal 
scalp locations and considered to be sensitive to working 
memory load and of a higher α–band (aprox. 11-13 Hz), 
usually found over parietal and occipital scalp locations and 
believed to be sensitive to visuospatial components of a task 
[24], as well as to semantic task [25]. Unlike the previous 
works we used these sub-bands for features extraction 
considering that they would provide a better tasks represention. 

TABLE 1: THE CORRECT CLASSIFICATION RATE 

 NNs    
Tasks

Baseline Count Letter Math Rotate 

 1st NN 90.62±3.61 90.70±6.45 87.00±4.55 94.55±6.85 92.28±4.86 

 2nd NN 72.61±7.46 52.61±7.46 63.66±6.69 68.64±9.27 63.21±8.06 

3rd NN 30.83±9.49 20.68±7.65 41.36±7.87 39±16.81 54.89±9.91 

 4th NN 76.54±7.79 75.73±8.14 83.88±6.00 85.00±3.46 87.96±6.90 

 5th NN 70.36±17.51 75.53±7.60 72.78±11.21 72.18±11.90 70.88±10.89 

Another point of improvement is related to the EEG quasi–
stable epochs considered for spectral estimations. The first 
three NNs point out that, for the same step (256 ms), we obtain 
better performance for increasing window length. Thus, for a 
window of 2.048 s we got the best results. Most of the BCIs 
consider shorter time periods (0.5 s in [16][18], 1 s in [19] and 
even less) overlapped by aprox. 250 ms but there are also 



papers that use a 2 s window [26]. 
Regarding the statistical phase synchrony parameter, it 

provided a relative good classification rate in both cases, with 
4th NN and with 5th NN. The last network performed a little 
worse than the 4th NN due to the supplimentary constraints 
imposed. The first use of this descriptor in the BCI applications 
was reported in [19]. The results were in the range of the 
accuracies reported in the other studies (aprox. 60%). Some 
reasons for this lack of improvements could be: 1) the index 
was computed in the frequency band 8-30 Hz comprising 
together two EEG bands (α and β) and 2) many averages of this 
index were done over different groups of scalp locations, thus 
diluting the very localized activities and hemispheric 
asymmetries assumed by the five mental tasks. 

From the presented EEG descriptors, the relative band power 
spectral density calculated for 2.048 s sliding windows gave the 
better results. Moreover, both descriptors outperform the results 
reported in the literature. 

IV. CONCLUSIONS 

A present-day interest for research is the relative importance 
of EEG oscillations versus EEG frequency-band synchrony 
between pairs of recording sites. Our results suggest that the 
relative energy within standard frequency bands is more useful 
in discriminating the five mental tasks than are the AR 
parameters or the EEG phase synchronization indices. 
Nevertheless, the results obtained in the classification task using 
only the phase synchrony parameter promote it as valuable 
complementary information to the relative band power one. 

Moreover, oscillations at higher frequencies (γ-band) in the 
human brain as also the EEG α– and β sub-bands may be related 
to a variety of controllable mental states, indicating its possible 
utility in BCIs. 

REFERENCES 

[1]  K. J. Friston, K. M. Stephan, and R. S. J. Frackowiak, 
“Transient phaselocking and dynamic correlations: are they the 
same thing?,” Hum Brain Mapp 5, 1997, pp. 48–57 

[2]  P. R. Roelfsema, A. K. Engel, P. König, and W. Singer, 
“Visuomotor integration is associated with zero time-lag 
synchronization among cortical areas,” Nature, no. 385, 1997, 
pp. 157–161 

[3]  T. H. Bullock, M. C. McClune, “Lateral coherence of the 
electrocorticogram: A new measure of brain synchrony,” EEG 
Clin Neurophys, vol. 73, 1989, pp. 479–498 

[4]  V. Menon, W. J. Freeman, B. A. Cutillo, J. E. Desmond, M. F. 
Ward, S. L. Bressler, K. D. Laxer, N. Barbaro, and A. S. Gevins, 
“Spatio-temporal correlations in human gamma band 
electrocorticograms,” Electroencephalogr Clin Neurophysiol, 
vol. 98, 1996, pp. 89–102 

[5] M. Rosenblum, A. Pikovsky, and J. Kurths, “Phase 
synchronization of chaotic oscillators,” Phys. Rev. Lett., vol. 76, 
1996, pp. 1804-1807 

[6]  L. M. Pecora, and T. Carroll, “Synchronization in chaotic 
system,” Phys. Rev. Lett., vol. 64, 1990, pp. 821-824 

[7]  S. J. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, 
“Detecting dynamical interdependence and generalized 
synchrony through mutual prediction in a neuronal ensemble,” 
Phys. Rev. E, vol. 54, 1996, pp. 6708-6724 

[8]  A. R. Damasio, “Synchronous activation in multiple cortical 

regions: Amechanism for recall,” Seminars in Neurosci, vol.  2, 
1990, pp. 287–296. 

[9]  http://www.cs.colostate.edu/~anderson/, 2000 
[10]  P. Tass, M. G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. 

Volkmann, A. Schnitzler, and H. J. Freund, “Detection of n : m 
phase locking from noisy data – application to 
magnetoencephalography,” Phys. Rev. Lett., vol. 81, 1998, pp. 
3291-3294 

[11] R. Otnes, and L. Enochson, “Digital time series analysis,” John 
Wiley & Sons, New York, 1972 

[12]  F. Mormann, K. Lehnertz, P. David, and C. E. Elger, “Mean 
phase coherence as a measure for phase synchronization and its 
application to the EEG of epilepsy patients,” Physica D, vol. 
144, 2000, pp. 358-369 

[13]  A. Isaksson, and L. H. Zetterberg “Computer Analysis of EEG 
Signals with Parametric Models”, Proceedings of the IEEE, vol. 
69, no. 4, 1981, pp. 450–461 

[14] R. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, 
“Performance of different synchronization measures in real data: 
A case study on electroencephalographic signals,” PHYSICAL 
REVIEW E, vol. 65, 2002, 041 903 

[15]  S. Haykin, “Neural Netwotks – A comprehensive Foundation,” 
2th ed., Prentice–Hall Inc., New Jersey, 1999 

[16]  C. Anderson and Z. Sijercic, “Classification of EEG Signals 
from Four Subjects During Five Mental Tasks,” Proc. of the 
Conf. on Eng. Applications in Neural Networks (EANN'96), 
Finland, 1996, pp. 407-414 

[17] C. Anderson, S. Devulapalli, and E. Stolz, “EEG Signal 
Classification with Different Signal Representations,” In Neural 
Networks for Signal Processing V, IEEE Service Center, 
Piscataway, NJ, 1995, pp. 475-483 

[18] B. J. Culpepper, and R. M. Keller, “Enabling Computer 
Decisions Based on EEG Input,” IEEE Trans. on Neural Syst. 
and Rehab. Eng., vol. 11, no. 4, 2003, pp. 354-360 

[19] E. Gysels, and P. Celka, “Phase Synchronization for the 
Recognition of Mental Tasks in a Brain–Computer Interface,” 
IEEE Trans. on Neural Syst. and Rehab. Eng., vol. 12, no. 4, 
2004, pp. 406-415 

[20] A. Keil, M. M. Müller, W. J. Ray, T. Gruber, and T. Elbert, 
“Human Gamma Band Activity and Perception of a Gestalt, The 
Journal of Neuroscience,” vol. 19, no. 16, 1999, pp. 7152–7161 

[21] J. Kissler, M. M. Müller, T. Fehr, B. Rockstroh, and T. Elbert, 
“MEG gamma band activity in schizophrenia patients and 
healthy subjects in a mental arithmetic task and at rest,” Clin. 
Neurophysiol., vol. 111, 2000, pp. 2079-2087 

[22] F. Pulvermuller, C. Eulitz, C. Pantev, B. Mohr, W. Lutzenberger, 
and N. Birbaumer, “High-frequency cortical responses reflect 
lexical processing: an MEG study,” Electroencephalogr. Clin. 
Neurophysiol., vol. 98, 1996, pp. 76–85 

[23] J. Bhattacharyaa, H. Petscheb, U. Feldmanna, and B. Rescher, 
“EEG gamma-band phase synchronization between posterior 
and frontal cortex during mental rotation in humans,” Neurosci. 
Letters, vol. 311, 2001, pp. 29-32 

[24] J. E. Roberts, and M. A. Bell, “Two- and three-dimensional 
mental rotation tasks lead to different parietal laterality for men 
and women,” Intern. J. of Psychophysiol., vol. 50, 2003, pp. 
235-246 

[25] D. Rohm, W. Klimesch, H. Haider, and M. Doppelmayr, “The 
role of theta and alpha oscillations for language comprehension 
in the human electroencephalogram,” Neurosci Lett., vol. 14; 
no. 310, 2001, pp. 137-40 

[26] Z. A. Keirn, J. I. Aunon, “A new mode of communication 
between man and his surroundings,” IEEE Trans. Biomed. Eng., 
vol. 37, 1990, pp. 1209-1214 


